Résumé :
|
Dossier consacré à la notion de récursivité. Exploration de fractales emblématiques : le flocon de von Koch, le triangle et le tapis de Sierpinski, l'éponge de Menger, l'ensemble de Mandelbrot, l'ensemble de Julia. La suite de Prouhet-Thue-Morse : origine, explication, ses résultats en analyse particulièrement ceux trouvés par le mathématicien Jean-François Bertazzon (équation différentielle), la recherche des zéros non triviaux. Présentation de la courbe du dragon inventée par les physiciens John Heighway, Bruce Banks, William Harter et popularisée par Martin Gardner. Le développement en fraction continue d'un nombre réel (l'algorithme d'Euclide, l'apport de Leonhard Euler, son avantage sur le développement décimal), l'expression en fraction continue du nombre d'or, une représentation géométrique du développement de v3 en fraction continue, le théorème de Joseph Lagrange relatif au caractère périodique d'un développement en fractions continues d'un irrationnel (irrationnel périodique). La récursivité en matière d'écriture de programme informatique. Les atouts de la récursivité en matière de programmation informatique comparativement aux boucles de programmation. Le recours à des procédés itératifs en géométrie algorithmique (maillages des surfaces, triangulation d'un polygone convexe et non convexe, recherche des deux points les plus rapprochés) avec des exemples d'application (surveillance par caméra vidéo, emballage).
|