Résumé :
|
Le point sur l'avènement et le développement des géométries non euclidiennes (géométrie hyperbolique ou géométrie de l'angle aigu, géométrie elliptique ou géométrie de l'angle obtus), fondées sur la mise en question du cinquième postulat d'Euclide, grâce aux travaux des mathématiciens Proclus de Lycie, John Wallis, Adrien-Marie Legendre, Jean-Henri Lambert, Giovanni Girolamo Saccheri, Nikolaï Ivanovitch Lobatchevski, Henri Poincaré, Carl Friedrich Gauss, Janos Bolyai et Bernhard Riemann. Encadrés : des raisonnements par l'absurde (démonstrations de Saccheri et de Lambert) ; fonctions périodiques et fonctions fuchsiennes.
|