Résumé :
|
Le développement et les applications relatifs à l'inégalité (première inégalité de Tchebychev, seconde inégalité de Tchebychev) : l'inégalité de corrélation dans le domaine de la statistique (covariance) ; la conjecture de Bertrand (inégalité de Tchebychev à la base de la démonstration du postulat de Bertrand). Encadrés : apports mathématiques de Tchebychev (théorie des nombres, polynômes de Tchebychev, cheval de Tchebychev, théorie des réseaux) ; orthographier les noms russes (alphabet cyrillique) en caractères latins (le cas de Tchebychev) ; présentation et résolution de la conjecture de corrélation gaussienne.
|