

SOMMAIRE

1. I	njection en mode Infusion	2
1.1	Préparation de l'échantillon à analyser	2
1.2	Mise en place de la seringue sur le spectromètre de masse	2
1.3	. Paramétrages du logiciel SQ 300 MS	5
1.4	Lancer l'infusion	7
2. 0	Création d'une méthode dans Chromera en mode LC-UV-MS	14
2.1	. Connecter la masse	15
2.2	Créer une méthode pour la masse	16
2.3	Créer une méthode LC-UV-MS	19
2.4	Lancer une analyse	22
2.5	Afficher les résultats de l'analyse	25

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

Eucée Saint-Paul IV	PROCEDURE D'UTILISATION	Pr Bioch Ma 035
	Utilisation de la chaîne LC-UV-MS	Version : 1
	Chromera / Flexar SQ 300 MS	Date d'émission : 12/11/2015
	Perkin Elmer	Page 2 sur 25

1. INJECTION EN MODE INFUSION

Étape permettant de déterminer les ions majoritaires produits lors d'une ionisation en mode positif ou négatif d'un échantillon correctement préparé.

1.1. Préparation de l'échantillon à analyser

- Les extraits injectés doivent être limpides et sans aucune matière en suspension →centrifugation 10 min à 10 000 g puis filtration au 0,22 μm. (si nécessaire)
- Les extraits doivent être **hydrosolubles**. Il est interdit d'injecter des échantillons gras, protéinés ou saturé en sucres.
- Les extraits doivent être **clairs** ou **très peu colorés** pour ne pas souiller la chambre d'ionisation du spectromètre de masse. Le cas échéant diluer les échantillons au maximum en eau milliQ si possible.

À défaut d'eau milliQ ultrapure (résistivité de 10 à 18,2 M Ω .cm soit conductivité entre 0,1 et 0,055 μ S/cm), utiliser une eau pure de résistivité comprise entre 1 et 10 M Ω .cm (σ entre 1,0 et 0,1 μ S/cm), l'utilisation d'eau pour batterie de voiture peut être une alternative de dépannage mais ne saurait être une solution sur le long terme sous peine de détérioration **irréversible** la colonne.

Pour conserver le détecteur ESI en bon état, les concentrations d'échantillons doivent être inférieures à 5 mg/L (5 ppm). Le cas échéant diluer les échantillons au maximum en eau milliQ si possible.

1.2. <u>Mise en place de la seringue sur le spectromètre de masse</u>

Se référer à la procédure « **Procédure de démarrage et fermeture du spectromètre de masse SQ 300 FLEXAR Perkin Elmer** » pour démarrer la masse et l'ordinateur.

- 1. Rincer la seringue 2 fois au méthanol.
- 2. Aspirer 500 µL de l'échantillon à analyser.
- 3. Positionner l'embout sur la seringue et laisser dépasser le tuyau de 1-2 mm.

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

4. Visser l'embout du tuyau relié à la *probe* avec la seringue. Pour cela, bloquer le côté *probe* et tourner le côté seringue.

5. Positionner la seringue sur la masse en placant son extrémité en verre dans la fente et la bloquer à l'aide de la patte de fixation.

Fente de positionnement de la seringue

6. Monter le plateau en tirant sur le bouton de blocage et le placer à 1-2 mm de la seringue.

Bouton de blocage du plateau

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

_	PROCEDURE D'UTILISATION	Pr Bioch Ma 035
CELucée Saint-Paul IV	Utilisation de la chaîne LC-UV-MS	Version : 1
académie La Réunion	Chromera / Flexar SQ 300 MS	Date d'émission : 12/11/2015
	Perkin Elmer	Page 5 sur 25

1.3. Paramétrages du logiciel SQ 300 MS

- 1. Ouvrir le logiciel en cliquant sur l'icône « SQ 300 MS Driver ».
- 2. Cliquer sur File \rightarrow Open Tune
- 3. Cliquer sur le *tune* le plus récent réalisé en *Neg1K* (si mode négatif) ou en *Pos1K* (si mode positif). Pour l'exemple choisi, le *tune* sélectionné est le dernier réalisé en mode positif le 01 oct 2014.

😵 SQ 300 MS Driver		
File View Instrument Collect Help	Obeu Taue	
New Tune New Method	pos_10k_01_Apr_2014_11h41m pos_10k_01_Oct_2014_10h29m pos_10k_05_Apr_2012_09h09m	
Open Data. Open Tune Open Method	pos_10k_06_Sep_2013_10h56m pos_10k_06_Sep_2013_12h10m pos_10k_06_Sep_2013_16h37m pos_10k_10_Apr_2012_07h45m	
Print Setup	pos_10k_10_Apr_2012_08h13m pos_10k_11_Apr_2013_15h04m pos_10k_30_May_2012_13h30m	
1 TP JPI_20150928-Vanillin-JPI_CAL test_1_1_2015-09-28-12-38-18 2 C:\ABData\Data\Snapshot	pos_1k_01_Apr_2014_11h31m pos_1k_01_Apr_2014_10h19m	
3 Test 01 Octobre 2014 2015-09-29 11H39M355 4 TP JPI_20150928-Vanillin-JPI_CAL 1ppm_1_1_2015-09-28-12-52-05	pos_1k_05_Apr_2012_09h03m pos_1k_06_Apr_2012_16h5tm pos_1k_06_Sep_2013_10h19m	
5 tests_20150928-test JPI_Ethylvanilline-2_1_1_2015-09-28-03-38-38 6 014878b6-aa4d-477e-929e-2ec5d1680780	pos_1k_06_5ep_2013_10h46m pos_1k_06_5ep_2013_12h00m pos_1k_06_5ep_2013_15h27m	
7 19466778-8200-4a50-9216-2899548ta0cf 8 TP JPI_20150928-Vanillin-JPI_CAL Ethyl vanilin 10ppm_1_1_2015-09-28-02-44-32	pos 1k 06 5ep 2013 16h05m	
Exit	OK Cancel	

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

_	PROCEDURE D'UTILISATION	Pr Bioch Ma 035
CELucée Saint-Paul IV	Utilisation de la chaîne LC-UV-MS	Version : 1
académie La Réunion	Chromera / Flexar SQ 300 MS	Date d'émission : 12/11/2015
	Perkin Elmer	Page 6 sur 25

4. Procéder aux réglages dans la fenêtre A

Calibration		
Calibration Points	(,118.01,2315.14021216691),(,322.05,6403	Pulse counting Time (us) :
CAPEX and Skimmer		Puise counting time (µs).
Capillary Exit (Volts)	Calibrated	- 100 en mode Scan
Skimmer (Volts)	Calibrated	- 300 000 en mode SIM
Channeltron Detector and PCDAU		
High Energy Dynode (Volts)	-10000	
Detector Gain (Volts)	-2545	
Signal Threshold (mV)	2	
Dwell and Delay Times		
Settling Time (ms)	1.1	
Pulse Counting Time (μs)	100	Acquisition mode : choisir le mode vou
Linhal Variables		Acquisition mode. choisir le mode vou
Acquisition Function	Scan	Scan ou SIM
Low m/z	100.000	Low m/z : plus petite masse à détecter
ligh m/z	500.000	(5 Da minimum)
Samples per mass	10.0	
Sim with Span	No Span	High m/z : plus grande masse à détecter
Ion Polarity	Positive	(3000 Da maximum)
ion Source		Samples per mass : laisser à 10
Cylinder Lens (Volts)	-4000	
Endplate (Volts)	-5000	lon polarity : choisir le mode d'ionisation
Capillary Entrance (Volts)	-6000	voulu Positive ou Negative
Endplate Temperature	High	5
Drying Gas Temp. (*C)	300	
Drying Gas Flow Rate (L/m)	8	
Nebulizer Gas Pressure (PSI)	80	Drying gas Temp (°C) : Régler à 300
Left Sample Vial On	True	Drying gas Flow Rate (I /m) :
Right Sample Vial On	False	
QO		- 8 si debit < 0,2 mL/min
Q0 RF Amplitude (Volts P-P)	Calibrated	- 12 si 0,2 < débit < 0,5 mL/min
Q0 Offset (Volts)	Calibrated	
Q0 Exit Lens 1 (Volts)	Calibrated	
Q0 Exit Lens 2 (Volts)	Calibrated	
Q1		A
01 Filter	Mass Filter	Suringo Mako : Chaisir la madàla da
Q1 Resolution	Calibrated	Synnge wake . Choisin le modele de
Q1 Coarse Resolution	0.27999999999999964	seringue utilisée, ici, une Hamilton
Q1 Offset Voltage (Volts)	Calibrated	Microliters Series Gastiaht
Q1 Ion Guide (Volts)	Calibrated	Swinge Medel Chaisir la volume de
Q1 Pole Polarity	Normal	syringe woder: choisir le volume de
Scan	C. C	seringue utilisée <i>, 500 μL</i> ici
Scans Per Spectrum	1	Svringe Diameter (mm) : vérifier que
Svringe Pump		volour oct bion 2.26
Suringe Make	Hamilton - Microliter Series Gastioht	valeur est bien 3.20
Svringe Model	500 ul	Syringe Flow Rate (µL/min): entrer ur
Svringe Diameter (mm)	3.26	valeur comprise entre 5 et 50 uL/mi
Swinge Flow Bate (ul/min)	10	généralement 10 en mode infusion
eyninger ferr i face (portini i j	19	generalement 10 en mode infusion

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

1.4. Lancer l'infusion

 Le gaz desséchant mets un peu de temps avant d'arriver à 300°C, il faut donc d'abord laisser le Syringe Flow Rate à 0 puis envoyer les informations de paramétrage à la masse en cliquant sur Apply → Tune.

SQ 300 MS Driver - pos_1k_01_0ct_2014_10h19m	
File Edit View Instrument Apply Collect Tune Window Help	
1 D 😅 🖬 🖸 🖂 🔪 Ture	
💯 pos_1k_01_0ct_2014_10h19m:1	

2. Vérifier la montée en température du gaz en cliquant sur **Instrument** \rightarrow **Status**.

Source		
Drying Gas Temperature:	84 °C	
APCI Heater	56 °⊂	
Corona Current:	0.0 uA	
Instrument Operation		Lamps
Vacuum State:	Unknown	Power: (
Diverter Valve State:	Load	Vacuum: 📢
Pressure		Ready: (
Analyzer Vacuum: 1.10e	-005 mBar	Close

3. Lorsque la température atteint 300°C, régler le débit à la valeur souhaitée (entre 5 et 50 μ L) et cliquer sur **Apply** \rightarrow **Tune**. Le pousse seringue se met en fonction, son voyant vert doit s'allumer.

SQ 300 MS Driver - pos_1k_01_	_0ct_2014_10h19m	
File Edit View Instrument Apply Co	llea Tune Window Help	
D 📽 🖬 🖂 🖂 🔣 Tune	. • • • • • ? •?	. O. I
B pos_1k_01_0ct_2014_10h19	m:1	
Created for: ESI		
Calibration		
Calibration Points	(,118.01,2315.14021216691),(,322.05,6403.849037291	
CAPEX and Skimmer		
Capillary Exit (Volts)	Calibrated	

Le cas échéant, appuyer directement sur le bouton poussoir.

4. Commencer l'enregistrement des ions détectés en appuyant sur l'icône Start Collecting

😵 🗅 File	50, 30 Edit	0 MS View	Driver - Instrumer	po It	Apply	01_00i Collect	1_20 Tun
: C) 🚅			1	4		X
	pos_	_1k_() start colle	cti	<mark>ng 1</mark> 0	h19m:1	
0	Created	for: E	SI				
I	E Cal	ibrati	on				

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

_	PROCEDURE D'UTILISATION	Pr Bioch Ma 035
CELucée Saint-Paul IV	Utilisation de la chaîne LC-UV-MS	Version : 1
académie La Réunion	Chromera / Flexar SQ 300 MS	Date d'émission : 12/11/2015
	Perkin Elmer	Page 8 sur 25

Une fois lancé, l'enregistrement commence, la **fenêtre B** montre l'intensité du signal détecté et la **fenêtre C** montre les ions détectés.

Si le signal est trop fort ou trop faible, régler la direction du spray à l'aide de la molette de réglage. Pour une infusion, on règle généralement le spray à **7-8 mm** vers la droite.

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

Voici un exemple de résultat obtenu en faisant varier la position de la probe

5. Déterminer les principaux ions détectés en réalisant un instantané en cliquant sur Collect -> Snapshot

Les fenêtres B et C s'ouvrent et correspondent aux enregistrements effectués depuis le début de l'analyse.

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

	PROCEDURE D'UTILISATION	Pr Bioch Ma 035
CELucée Saint-Paul IV	Utilisation de la chaîne LC-UV-MS	Version : 1
académie La Réunion	Chromera / Flexar SQ 300 MS	Date d'émission : 12/11/2015
	Perkin Elmer	Page 10 sur 25

Activer la fenêtre B en cliquant dessus et sélectionner à l'aide de la souris une zone du signal reçu pendant une période stable du signal d'environ 1 minute puis sélectionner **Average Spectra**

Une nouvelle fenêtre C apparait, avec beaucoup moins de bruit de fond que la précédente, les ions principaux et secondaires sont repérables à ce stade.

Pour obtenir des informations sur les pics détectés, cliquer sur **Evaluation** \rightarrow **Peak Detect...**

Une fenêtre apparait, vous pouvez à ce niveau décider de restreindre les masses à scanner en choisissant **Partial Spectrum** et en indiquant les limites à prendre en compte, *160* et *250* dans notre exemple. Valider vos réglages en cliquant sur **OK**

Full Spectrum Pirtial Spectrum tart (m/z): 160 End (m	n/z): 250
Selection Criteria	
S/N greater than:	
Abs. Ampl. greater than threshold	
Rel. Ampl. greater than (% of max p	eak):
Abs. Area greater than:	0
Rel. Area greater than (% of max pe	eak):
FWHM greater than (m/z):	0.01
FWHM less than (m/z):	0.01
No. Highest Peaks:	1
Max Valley (% above baseline):	25
m/z Assignment	
Centroid of the Top (% peak ampl):	25
-Display	Feature Search
Display Results	Sequential
ОК	Cancel

Rédigé par : M. MICHNICK Date : 22/10/2015

N	Approuvé par : M. LAMAUVE
	Date : 10/11/2015

PROCEDURE D'UTILISATION	Pr Bioch Ma 035
Utilisation de la chaîne LC-UV-MS	Version : 1
Chromera / Flexar SQ 300 MS	Date d'émission : 12/11/2015
Perkin Elmer	Page 11 sur 25
	PROCEDURE D'UTILISATION Utilisation de la chaîne LC-UV-MS Chromera / Flexar SQ 300 MS Perkin Elmer

Une nouvelle fenêtre montrant les informations de chaque pic détecté s'affiche.

Très souvent, le nombre de pics est bien trop élevé et il est nécessaire de régler le seuil de base afin de ne pas traiter les pics trop petits. Pour cela, cliquer sur **Evaluation** \rightarrow **Threshold...** puis entrer un seuil adéquat, ici 10 000 000 pour éliminer tous les pics inférieurs à ce seuil.

Appliquer les réglages en cliquant sur Evaluation -> Substract Threshold

File Edit View	Evaluation Instrument Collect \	Vindow Help				
	Aerosol					
100	Baseline			True of Original		
La pos_1K_0	Subtract Baseline			Test of Octobre a	2014-2015-04-30 06H5/MC	195.5qu:2
Created for L.	Threshind					
E Calibratio	Subtract Thre hold			F		
E Calibration	Smooth	118.01.2315.14021216691	11.322.05.6403.849037291	100		
E CAPEX a	Peak Detect			E	Materia and Ma	NATAN
Capillary E	Provide Peak Deconvolution	alibrated		1 90 [A La standa MT	ist.
Skimmer (Charge State Deconvolution					
🗆 Channel		-				
High Ener	Save				TIC	
Detector (Run				Scan 1	
Signal Thu	Save Spectra to Library				SCarl I	
Dwell. N	Run Library Search					
Setting	71 159 51241612 020				Macc	
Puise L -	/1.130, 31341013.939				GEN /4 96969 - 6 2025	0
Acquici	E			•	0214 (4100300 012320.	./
Low ma	50.00M E		134			
High m	45.00M-E		220			
Sample P	40.00M-					
Sim with 8	35.00M-E					
lon Pol.	30.00M					
🗉 Ion So 💩		countire ch	nici			
Cylinde y	25.00M Seunae	coupure ch		227.08		
Endplat 5	20.00M	/				
Capillar, 8	15.00M-E					
Endplat	10.00M-					
Drying	5.00M-E	171.99	170.99 194.93 2	228.08 248.07		
Druinge	O ODINE I LA LA	in al sela da sela 🕺	Kar I da da	. 1 Kn 1. 1. 1.	آ ا با آم ا آم	1 1 .
Nebuliz	0.001	150	000	050		
Left Sa	100	150	200	250	300 m/z	3
Right S						
500	Card m/z Max Ampl m/z	Charge Mono M	ass Average Mass Wi	dth (m/z) Res. Power	Noise S/N I	Max Abs Ampl
Q0 Hr 1	169.9657 169.90	97 0 0	0.0000 0.0000	0.5810 292.53	30865.80 762.61	24069859.82
GITT INSTA	1 (no cons) (no co					

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

_	PROCEDURE D'UTILISATION	Pr Bioch Ma 035
CELucée Saint-Paul IV	Utilisation de la chaîne LC-UV-MS	Version : 1
académie La Réunion	Chromera / Flexar SQ 300 MS	Date d'émission : 12/11/2015
	Perkin Elmer	Page 12 sur 25

Relever les informations qui vous intéressent, notamment les rapports m/z des principaux ions détectés ou bien enregistrer vos résultats avec **Evaluation** \rightarrow **Save...**.

Une fois terminé, arrêter la collecte des informations en cliquant sur Stop Collecting

Arrêter l'infusion en réglant le débit à $0 \,\mu L/min$ puis cliquer sur **Apply** \rightarrow **Tune**

(,118.01,2315.14021216691),(,322.05,6403
Calibrated
Calibrated
-10000
-2545
2
1.1
100
Scan
100.000
500.000
10.0
No Span
Positive
-4000
-5000
-6000
High
300
8
80
True
False
Calibrated
Calibrated
Calibrated
Calibrated
Mass Filter
Calibrated
0.279999999999964
Calibrated
Calibrated
Normal
Toma
1
J.J.
Hamilton Minediter Carine Carinet
mamilton - microliter Series Gastight
2.00 µ
3.26

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE		
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015		

-	PROCEDURE D'UTILISATION	Pr Bioch Ma 035	
CELUCÉE Saint-Paul IV	Utilisation de la chaîne LC-UV-MS	Version : 1	
académie La Réunion	Chromera / Flexar SQ 300 MS	Date d'émission : 12/11/2015	
	Perkin Elmer	Page 13 sur 25	

- 6. Une fois l'infusion terminée, rincer 2-3 fois la seringue avec du méthanol puis refaire une infusion avec du méthanol en remettant le débit à 10 μ L/min puis **Apply** \rightarrow **Tune**. Laisser infuser au moins **200** μ L de façon à bien rincer la *probe*.
- 7. Arrêter le rinçage en remettant le débit à $0 \mu L/min$ puis **Apply** \rightarrow **Tune**. Régler le spectromètre de masse en Standby avant d'aller dans le logiciel Chromera en cliquant sur **Instrument** \rightarrow **Standby**

Vérifier que l'appareil est bien en Standby en regardant l'information affichée dans le coin inférieur droit

8. Fermer la fenêtre **SANS ENREGISTRER** les changements effectués dans le tune.

- 9. Déconnecter la seringue de la *probe*, la rincer avec du méthanol et la remettre pleine de méthanol en place sur la masse.
- 10. Si vous voulez réaliser une LC/MS, relier la *probe* à l'HPLC en utilisant les mêmes règles de serrage vues au 1.2.4.

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

_	PROCEDURE D'UTILISATION	Pr Bioch Ma 035
CELucée Saint-Paul IV	Utilisation de la chaîne LC-UV-MS	Version : 1
académie La Réunion	Chromera / Flexar SQ 300 MS	Date d'émission : 12/11/2015
	Perkin Elmer	Page 14 sur 25

2. CREATION D'UNE METHODE DANS CHROMERA EN MODE LC-UV-MS

La procédure décrite ci-dessous se veut volontairement succincte, elle ne traite donc pas de l'utilisation d'une gamme étalon, de l'optimisation d'une méthode, du retraitement par lot ni de la création d'un format de rapport. Pour de plus amples informations à ces sujets, se référer à la documentation officielle « **Chromera User's guide.pdf** »

1. Ouvrir le logiciel Chromera LC-UV-MS en cliquant sur l'icône du bureau. Une fenêtre s'ouvre vous indiquant que le logiciel se connecte aux différents appareils

Ģ	Device Connections			X
	Device	Connected?		Tries
	MS		connecting	0
	UV.		connecting	0
	Pompe		connecting	0

Une fois les appareils connectés, la fenêtre devient

Device Connections			
Device	Connected?		Tries
MS		Disconnect	1
UV		Disconnect	1
Pompe		Disconnect	1

Si une connexion a échouée (case non cochée), éteindre l'appareil qui n'a pas réussi à se connecter, attendre 30 secondes puis le rallumer et essayer de le connecter à nouveau en appuyant sur **Connect**.

2. Si tout est OK, la fenêtre suivante apparait :

	13-13-11-00倍差1型人公日本			
	Gallec uv Ms	1		
un Time	AbsorbanceData: 0 · · 0	C PILL OF CALLOR		
Control Mode		Direct Control		
Manual Control	000	MS: Stop MS Equil		
Sequer Manual Cont A	-0.05	MS: Vent MS		
	-0.10	MS: Diverter Valve: Diver	at .	
	0.15	MS: Tune Control	_	_
No.	g -020	UV: Autozero	F	
Pix 1	g -025	CILIV: Turn Lang Off		
D	8 -0.30	Start LC Pump		
D	-0.35			
	-0.40			
Reference Plots	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5	5.0		
Manual Control Devices	Time (min)			
in an a contra o crites	Manual Control	5		
	2			
		iquence Status	MS: Cylinder Current (nA)	MS: Operate
	Manine Revelue Method Lane		0.0 nA	Ready
	Start Browne for method. None	5. Vacuum State	UV: Satipling Rate	MS: MS Detector St
	MS: Vent MS	andby	5.0 ptc/s	Standby
	Apply	7. Detector Status	HS: Drying Gas Temper.	Elapsed Time
	MS: Standby	1009	Into C	
	Not a second sec	and Residue	55 °C	Treeson humber
	Appy Browne for metho	S. MS Andrew Slight	Firm Step Tree	Baunda
	UV: UV Settings Wavelength (nn) Sampling Rate (pts/a)	Acquiring	0.0 min	and the second s
	Apply 250 5	/ Wavelength	MS: Source Door	Pump Flow
	Pump Settings Flow (mL/min) 2A () 28 ()	4 nm	Closed	0.000 mL/min
	Apply 1.000 5.0 95.0	S: Capilay Entrance.	A% ()	Pump Elapsed Time
Run Time	Purge Purge Flow (mL/min) 100% A () 100% B ()	AnD	95.0	0.2 min
Method		/ Absorbance	HS: Analyzer Piessure [
Sequence		0000 mAU	0.00 Torr	
Post Ru		mp Status	BXQ	
		hutdown	5.0	G
		S: End Plate Current (MS: Foreine Pressure (_	_
Reprocess		1 - 0	C - 1 1 1 1	
Reprocess		An U		
Reports	8	JnA		

A : Mode de contrôle :

- **Manual control** \rightarrow permet de contrôler directement les instruments
- **Single Run** \rightarrow lancer une injection unique
- Sequence \rightarrow lancer une série d'injection
- B : Choix des graphes affichés dans la fenêtre D
- C : Mode d'utilisation du logiciel :
 - **Run time** \rightarrow choisir le mode de contrôle souhaité
 - **Method** → créer/éditer une méthode
 - Sequence → créer/éditer une série d'injection

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE		
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015		

Cucée Saint-Paul IV	PROCEDURE D'UTILISATION	Pr Bioch Ma 035
	Utilisation de la chaîne LC-UV-MS	Version : 1
académie La Réunion	Chromera / Flexar SQ 300 MS	Date d'émission : 12/11/2015
	Perkin Elmer	Page 15 sur 25

- Post Run → analyser les données
- **Reprocess** \rightarrow recalculer le chromatogramme
- **Reports** \rightarrow choisir les données à afficher dans le rapport d'analyse
- D : Graphe en temps réel
- E : Paramètres de réglage du mode de contrôle sélectionné dans la fenêtre A
- F : Panneau de contrôle permettant de démarrer la pompe, allumer/éteindre la lampe UV...
- G : Panneau des états de l'appareil en temps réel

2.1. Connecter la masse

Cliquer sur Run Ti	$me \rightarrow$ Manual Cont	ol			
	😑 Control Made	1			
(Manual Contri Single Run Sequence	0.00 -0.05 -0.10			
	Plots Plot 1	-0.15 -0.20 -0.25			
		-0.30 -0.35 -0.40			
	Reference Plots	0.0 0.5	1.0	1.5	2.0
	Manual Control Devices	Manual Control			
		Manual Control		-	
		2			
		Monitor Baseline	Method M	ethod Name	
		Start Browse	for method	None	
		MS- Vent MS			
		Apply			
		MC. Charles	-		
		Andu			
			_		
		MS: Uperate	Method name	Brows	e
		Appiy		browse for n	nethod
		UV: UV Settings	Wavelength (nm	Sampling I	Rate (pts/s
		Apply	250	5	
		Pump Settings	Flow (mL/min)	%A ()	%B ()
		1	1 1 000	5.0	I 95.0
		Apply	1.000		00.0
	Run Time	Purge Pump	Flow (ml /min)	100% 4.0	100% B 0
(🔊 Run Time	Purge Pump Apply	Flow (mL/min)	100% A ()	100% B ()

- Cliquer sur Browse for method \rightarrow ESI Operate method \rightarrow Open \rightarrow Apply

Select Operate	e Method			? 🔀	Man	ual Control			
Look in	: 🕞 🖂	<u> </u>	00	<u>۶</u>	2				
My Recent Documents	ESI Operate I	lethod				Monitor Baseline	Method Browse for method	Method Name None	
Desktop					-	MS: Vent I Apply MS: Stand	4S		
My Documents						Apply MS: Opera Apply	te Method n. C:\Docume	ame Bro nts an Browse	owse for metho
					-	Apply	Wavelengtl 250	n (nm) Samplii	ng Rate (pts/s) 5 🛛 💭
My Computer						Pump Settin	ngs Flow (mL/m	in) %A()	%B ()
	File name:	ESI Operate Method		Open	D	Purge Pun	p Flow (mL/m	in) 100% A ()	100% B ()
My Network	Files of type:	method files (*.sqm)		Cuncer		Apply	1.000		

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

-	PROCEDURE D'UTILISATION	Pr Bioch Ma 035
CELucée Saint-Paul IV	Utilisation de la chaîne LC-UV-MS	Version : 1
académie La Réunion	Chromera / Flexar SQ 300 MS	Date d'émission : 12/11/2015
	Perkin Elmer	Page 16 sur 25

- Vérifier dans le panneau des états (G) que le MS Detector State affiche bien Operate
- La température de la masse doit absolument être à **300°C** lors d'une injection en mode LC-MS, ne connecter le tuyau provenant de la colonne à la masse qu'à cette condition.

2.2. <u>Créer une méthode pour la masse</u>

1. Cliquer sur **Method** puis cliquer sur **File** \rightarrow **Create/Edit MS Method**. Le logiciel SQ 300 MS Driver s'ouvre.

ile View Tools Display Actions He	elp
New Method	
Create/Edit MS Method/Tune	20150929-test SP4
OpeCreate/Edit MS Method/Tune	Method Name
Save Method As	20150929-test SP4
Extract Method from Recults	
Bup Time	
Run nine	
Method	
Sequence	
Sequence	

2. Dans SQ 300 MS Driver, cliquer sur **New method** \rightarrow **ESI**

SQ 300 MS Driver - [Acquisition Method COM]	New Acquisition Method 🛛 🛛 🔀
New Tune New Method Open Data Open Tune Open Method	Source O ESI O APCI O Dual ESI Time Periods: 1
Close Save Ctrl Save As	I+s OK Cancel
Print Ctr	14-P

Renseigner le champ *Description* en indiquant le nom de votre méthode puis enregistrer votre méthode avec File → Save method. Donner un nom explicite, une astuce pour se repérer rapidement est de commencer le nom de la méthode par la date en utilisant le format YYMMJJ.

Chromera - L C_UV_MS (Administrator) File View Tools Display Actions Help File View Tools 000 MS Driver Method File Edit View Instrument Apply Collect Fil	VA 그로 (기 1 그로 🧟 - 🦜 - 티 4a (또 <i>프</i> Tune Window Help • 문 (<i>급</i>) 😵 🛠	
MS W Ponp Ponp W UV UV UV UV UV UV UV UV V V V V V V V V V V V V V	Description: Sumio - Procedure LC-L Top polarity out to delay 0.7 is second (NY-MS 0.102.00) Save Acquisition Method IS-10-06 - Procedure Sumial 02.04-14 Screening ion 290 02.05-2.01 02.05-2.02 150930-methode screening 20150928-husion vaniline SM 20150928-busion Vaniline SM Public Scon Aplanedon MF_Lest_peg_Scon MF_Lest_peg_Scon MF_Lest_peg_Scon MF_Lest_peg_Scon MF_Lest_peg_Scon MF_Lest_peg_Scon MF_Lest_peg_Scon MF_Lest_peg_Scon MF_Lest_peg_Scon MF_Lest_peg_Scon

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

3. Cliquer sur le point vert et régler la durée totale d'analyse qui devra être la même que celle indiquée dans Chromera. Dans notre exemple, le **Time Period 1** est réglé à 10 minutes.

😵 SQ 300 MS Driver - [Acquisition Method	COW]
File Edit View Instrument Apply Collect	Tune Window Help
	19 12 🥱 🦿 🕅
 Method: 10.00m Time Period 1: 10.00m Scan (±): 5.80,3000.00,29.95s Diverter Valve 	Duration 10 Timebase Min Save

- 4. Appeler les bons réglages en fonction du mode d'ionisation choisi. Pour cela :
 - Sélectionner Scan (+) en cliquant sur le point bleu

- Appeler le bon tune par Edit \rightarrow Import \rightarrow Pos1K et sélectionner le dernier tune réalisé.

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

5. Effectuer les réglages selon vos besoins. Dans l'exemple ci-dessous, l'acquisition se fait en mode SIM (car pics connus lors d'une infusion) pour une m/z de 226, avec une ionisation en mode positif.

reated for: ESI		Pulse Counting Time (μs) :
Signal Threshold (mV)	0	
Dwell and Delay Times		- 300 000 en mode SIM
Settling Time (ms)	la:	100 on mode Scan
Pulse Counting Time (µs)	300000	
3 Global Variables		
Acquisition Function	Sim	Acquisition Function : Mode SIM ou Scan
Low m/z	226.000	
High m/z	3000.000	
Samples per mass	10.0	Low m/z : 226 pour notre exemple en mode SIM
Sim with Span	No Span	
Ion Polarity	Positive	
I Ion Source		Ion Polarity : Mode positif dans notre exemple
Cylinder Lens (Volts)	- 500	
Endplate (Volts)	-5000	
Capillary Entrance (Volts)	-6000	Ne pas modifier les autres paramètres
Endplate I emperature		
Drying Gas Temp. (*C)	300	
Drying Gas Flow Rate (L/m)	12	
Nebulizer Gas Pressure (PSI)	SU	Drving Gas Temp. (°C) : doit être à 300°C
Dialet Sample Vial On	False	
	T dise	
00 BE Applitude (Volts P.P)	Single=600.00	Drving Gas Flow Rate (L/mL) :
Q0 Offset (Volts)	Single=-8.00	
Q0 Exit Lens 1 (Volts)	Single=-0.40	- 12 si debit entre 0,2 et 0,5 mL/min
Q0 Exit Lens 2 (Volts)	Single=-90.00	- 8 si débit < 0.2 mL/min
3 Q1		
Q1 Filter	Mass Filter	
Q1 Resolution	Single=0.00	Nebulizer Gas Pressure (PSI) : doit être à 80
Q1 Coarse Resolution	0	
Q1 Offset Voltage (Volts)	Single=-1.00	
Q1 Ion Guide (Volts)	Single=-12.60	
Q1 Pole Polarity	Reversed	
3 Scan		
Scans Per Spectrum	1	
Syringe Pump		
Syringe Make	Harvard - Stainless Steel	
Syringe Model	8 cc	
Syringe Diameter (mm)	9.5	
Syringe Flow Rate (µl/min)	0	

Low m/z

Minimum: 5.000 Maximum: 3000.000 Step: 0.050

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

Créer autant de points de réglages que de masses à détecter. Pour cela, faire des copies du point de réglage déjà défini. Cliquer le point bleu à copier puis sur Edit → Copy. Cliquer ensuite sur le point vert et sur Edit → Paste.

Time Peri Sim (verter Valv	ed 1: 10.00m +): 226.00,30 e	0.00ms			Diverter Va	eriod 1: 10.00m 1 (+): 226.00,300.0 alve
File	Edit View Ins	trument Apply	Ci Ci	File	Edit View	Instrument Apply
	Undo	Ctrl+Z	1	: D 🖬	Undo	Ctrl+Z
	Cut Copy	Ctrl+X Ctrl+C			Cut Copy	Ctrl+X Ctrl+C
	Insert Delete	Ctri+v	ns		Insert Delete	n
	Up Down				Up Down	
	Sort Autotune Upo	date			Sort Autotune	Update
	Import Export				Import Export	
	Tune Compar	e			Tune Cor	npare

7. Après avoir réglé les masses des différents ions à détecter (2 dans notre exemple), enregistrer votre méthode en cliquant sur **File** → **Save**

File Edit View Instrument Apply Collect Tun	File Edit View Instrument Apply
	[New Tune New Method
Method: 10.00m Sm (+): 170.00,300.58ms Sm (+): 226.00,300.58ms	Open Data Open Tune Open Method
	Save
	Dave As
	Print Print Preview

Une fois sauvegardé, fermer le logiciel SQ 300 MS Driver et retourner dans le logiciel Chromera

2.3. <u>Créer une méthode LC-UV-MS</u>

- Cliquer sur File → New Method
- Donner un nom à votre méthode, indiquer le groupe auquel appartient le type d'analyse et donner une description claire de la méthode (Type de colonne, Types d'éluants...).

File	View Tools Display Actions
	New Method
	Create/Edit MS Method/Tune
17	Open Method
诊	Save Method
16	Save Method As
	Extract Method from Results
8	Print Preview Method
10	Print Method
	Exit

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

1. Indiquer à Chromera la méthode pour la masse à utiliser en cliquant sur $MS \rightarrow Browse$ for Method...

- Cliquer sur la méthode que vous venez de sauvegarder dans SQ 300 MS Driver.

2. Régler le détecteur UV. Sélectionner **UV** dans Instruments, développer la fenêtre en cliquant sur le sigle (+) puis procéder au réglage de la longueur d'onde voulue.

🔄 Chromera - LC_UV_MS (Administrator)	
File View Tools Display Actions Help	
21] 🖞 🛱 😪 🗞 🗋 🖉 🔛 📄 🕴	◎ 🖄 III 🖾 🗟 🕄 🕄 Š • 🗄 🖄 🕷 🗭
Proc	edure LC-MS
Method	
Procedure LC:MS MS Promo MS Promo W Promo Promo	Device Channel Name Sampling Rate (pts/s) End Time (min) V UV 1 5 10.0 Elapsed Time (min) Variation gth (nm) Autozero 0.0 254 * Description TE1 TE2 TE Time (min) *

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

3. Régler la pompe. Cliquer sur **Pompe** dans Instruments, développer la fenêtre en cliquant sur le sigle (+) et procéder aux réglages souhaités (gradient/isocratique, temps, % des éluants A et B...)

1. 🛍 🛱 😪 🗞 🗋 🕘 🔁 🔛 👘	100	1 111 111		- 🕹 🕯	📕 • 🚹 😒 🎆	P				
B LO	_UV_N	IS : Pr	ocedure L	C-MS						
thod									_	
Procedure LC-MS										
insuchents		Device	In Use	Transil	ion Total time	(min) Run Time	Reconciliation	Advanced		
- 🛄 UV	F	ompe		Gradient	9.5	4	~			
Channels		Step	Step Typ	ре	Step Time (min)	Flow (mL/min)	%A	%B	C	arve
⊖ III UV	•	0	Equil		0.5	0.450	95.0	5.0		
		1	Run	~	6.0	0.450	35.0	65.0	1.0	
		2	Run	~	0.1	0.450	0.0	100.0	1.0	
- 1 PER(0.0:10.0)PSIM(226.0).0.0,		3	Run	~	1.0	0.450	0.0	100.0	1.0	
Peaks		4	Run	~	0.1	0.450	95.0	5.0	1.0	6
	4-1	5	Run		2.3	0.450	95.0	5.0	1.0	-
🖻 📀 MS	*			~						
- 3 PER(0.0:10.0)PSIM(170.0),0.0,		241			VI SANATA PARA	0.14				

Si le temps total de l'ensemble des étapes est différent du temps indiqué dans la méthode pour la masse, un message d'erreur s'affiche vous proposant de ramener le temps d'analyse dans la méthode pour la masse égale au temps total indiqué. Cliquer sur **No** et contrôler vos temps.

Run Time Reconciliation	X
The pump run time is less than the data acquisition end time for the following device: The deter <9.5>?	tor MS end time is 10.0.Do you want the end time of the above to be reduced to be the same as the pump run time

4. Lorsque tous les paramètres sont bien réglés, enregistrer votre méthode avec Save Method

ic view roois Dispidy Actions	Help										
New Method				2	3.	🏅 • 🚹 🖄 🕷	P				
Create/Edit MS Method/Tune	LC UV	MS : Pr	oced	lure LC	C-MS						
Open Method							_		_	_	
Save Method											
Cause Mal Save method		Device		In Use	Transit	ion Total time I	(min) B	un Time Reconciliation	Advanced		
Extract Method from Besults	B P	ompe		v 0	aradient	10.0					
Drink Drawiew Mathad		Step	1	Step Typ	e	Step Time (min)	Flow (m	IL/min) %A	%B	1	Curve
Princ Preview Method		0	Equil		~	0.5	0.450	95.0	5.0		
Print Method		1	Run		-	6.0	0.450	35.0	65.0	1.0	
Exit	-	2	Run		~	0.1	0.450	0.0	100.0	1.0	
1 PER(0.0:10.0)PSIM(226.0),0.0,	' -	3	Run		~	1.0	0.450	0.0	100.0	1.0	
🕀 🤽 Peaks		4	Run		~	0.1	0.450	95.0	5.0	1.0	
		5	Run		~	2.8	0.450	95.0	5.0	1.0	
C C MS	*				~						
ma da ma		19	Q2 17		1000	2	3.00	12 c		- 23	

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

Date d'émission : 12/11/2015

Pr Bioch Ma 035

Version:1

2.4. Lancer une analyse

Afin de mettre les appareils en conditions d'équilibre avant de lancer une analyse, aller dans l'onglet **Run Time** et choisir **Manual Control**.

Dans la fenêtre Control Panel

- Cliquer sur UV : Turn Lamp On afin d'allumer la lampe du détecteur (Au cas où la lampe n'était pas encore allumée) (cadre bleu)

Dans la fenêtre Manual Control

- Mettre la longueur d'onde utilisée dans votre méthode au niveau de UV : UV Settings et cliquer sur Apply (cadre vert)
- Mettre le débit de la pompe de votre méthode ainsi que les pourcentages initiaux de votre gradient %A et %B et ensuite cliquer sur **Apply**. Attention bien vérifier que le SQ300 soit en mode **Operate** et que la source soit chauffée à 300°C sinon ne pas connecter la sortie de la colonne vers le spectromètre de masse pendant le temps d'équilibre. (cadre violet)

Dans la fenêtre Status Panel,

- vérifier que vos paramètres ont bien été pris en compte avant de lancer les analyses :

MS Operate : Ready MS : MS detector State : Operate MS : Drying Gas Temperature : 300°C UV :Wavelength : Longueur d'onde souhaitée de votre méthode Pump Flow : Débit souhaité dans votre méthode Pump Status : Running A % : % souhaité dans votre méthode B % : pourcentage souhaité dans votre méthode.

Après 10min d'équilibration de vos différents équipements, vous pouvez lancer votre analyse en sélectionnant **Single Run** → **Open Method** ...

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

	PROCEDURE D'UTILISATION	Pr Bioch Ma 035
CELucée Saint-Paul IV	Utilisation de la chaîne LC-UV-MS	Version : 1
académie La Réunion	Chromera / Flexar SQ 300 MS	Date d'émission : 12/11/2015
	Perkin Elmer	Page 23 sur 25

- Choisir la méthode que vous avez créez et cliquez sur **Open**.

Ta Dal	ia Selec	tor - Single Method				
Oper	n 📜	Organize • Actions •				
😑 Me	thod Gro	oup : tests (9 items)				
	Select	Method Name	Created Date/Time	Last Edited Date/Time 🗸	Author	Editor
		Procedure LC-MS	9/30/2015 10:08:16 A	9/30/2015 10:08:52 AM	Administrator	Administra
		20150920 10 10 004	9/29/2015 2:31:02 PM	9/29/2015 3:31:30 PM	Administrator	Administra
		20150928-test JPI	9/28/2015 3:17:13 PM	9/28/2015 4:03:44 PM	Administrator	Administra
		Full Scan ESI+ 100-500 Aplamedom	4/1/2015 5:33:37 PM	4/1/2015 5:38:07 PM	Administrator	Administra

- Une fois ouverte, la méthode est affichée et apparait dans la fenêtre de gauche.
- Avant d'activer la méthode, il faut renseigner les différents champs (n° échantillon...), pour cela, cliquer sur la **fiole bleue** et entrer les informations
- Cliquer sur **Apply** pour lancer la méthode aux instruments de la chaîne HPLC.

- Une fois lancée, L'ordinateur fait les tests de connexion avec tous les appareils. Lorsque le checklist est terminé, le message « *Waiting for manual injection* » en bas à droite vous prévient que l'appareil est près et attend l'injection.

nt Device Situa	ation:			Current Device Situ	ation:		
Device	Ready for Acquire	Status	Ignore This Device	Device	Ready for Acquire	Status	Ignore This Devic
MS		Equil		MS		Equil	
UV		Ready		UV		Ready	
Pompe		Equilibrating		Pompe		Ready	
				ALL D	EVICES AF	ENOV	KEADY

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

	PROCEDURE D'UTILISATION	Pr Bioch Ma 035
Celucée Saint-Paul IV	Utilisation de la chaîne LC-UV-MS	Version : 1
académie La Réunion	Chromera / Flexar SQ 300 MS	Date d'émission : 12/11/2015
	Perkin Elmer	Page 24 sur 25

- Injecter au moins **40 μL** d'échantillon pour une boucle de **20 μL**. Attention à ne pas injecter la bulle qui est presque toujours présente près du piston. Basculer la vanne d'injection en position **Inject**.
- Laisser la vanne dans cette position pendant le temps d'analyse puis rebasculer en position **Load** en fin d'analyse.

Pendant l'analyse, on observe en temps réel tous les graphes sélectionnés dans la fenêtre Plot

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015

2.5. Afficher les résultats de l'analyse.

- Cliquez sur Post Run dans l'onglet des méthodes puis File \rightarrow Open data

S	lect	Batch Name		Batch Group	Batch Description	Created Date/Time	Reprocessed By	Reprocessed	Batch Type	
-		Procedure LC-MS		tests	Ecriture procedure	9/30/2015 11:19:59 AM			Acquired	
	-	Southers Name		Analyst	Sample Type	Acquisition Date/Time	Sample Description	Reprocessed	Instrument Name	Method
		Injection 2		Administrator	Sample	9/30/2015 11:19:59 AM	Ecriture procedure		LC_UV_MS	Procedu
S	lect	Batch Name		Batch Group	Batch Description	Created Date/Time	Reprocessed By	Reprocessed	Batch Type	1
-		Procedure LC-MS		tests	Ecriture procedure	9/30/2015 10:58:03 AM			Acquired	
	-	Procedure 01		tests	Ecriture procedure	9/30/2015 10:24:20 AM			Acquired	
	H	20150929-test SP4		taoto	Dosage vanilline	9/29/2015 3:19:40 PM			Acquired	
		20150929-test vaniline		tests	Dosage vanimite	9/29/2015 3:18:34 PM			Acquired	
	T	20150929-test vanilline		tests	Dosage TP	9/29/2015 2:41:25 PM			Acquired	
		20150928-test JPI		tests		9/28/2015 3:52:37 PM			Acquired	
		20150928-test JPI		tests		9/28/2015 3:38:38 PM			Acquired	
		20150928-test JPI		tests		9/28/2015 3:23:59 PM			Acquired	
		Full Scan ESI+ 100-500 Apl	amedom	tests		4/1/2015 5:34:34 PM			Acquired	
	Π	Dosage caf etalon		tests		6/1/2012 3:30:05 PM	Administrator	6/1/2012 4:50:2	Acquired	
		Dosage caf etalon		tests		6/1/2012 3:23:53 PM			Acquired	
		2012 06 01		tests	etalonnage cafeine	6/1/2012 12:40:59 PM	Administrator	6/1/2012 12:53:	Acquired	
		2012 06 01		tests	etalonnage cafeine	6/1/2012 12:22:40 PM	Administrator	6/1/2012 12:52:	Acquired	
		guanti cafein		tests	Gamme d etalonna	6/1/2012 11:26:51 AM			Acquired	
		4-hydroxybenzaldehyde		tests		5/31/2012 6:05:15 PM			Acquired	
		vanilin sim jpi		tests		5/31/2012 3:43:44 PM			Acquired	
		vanilin_sim_jpi		tests		5/31/2012 3:15:08 PM			Acquired	
		sdcaf		tests		5/31/2012 11:43:23 AM	Administrator	5/31/2012 12:3	Acquired	
		sdcaf		tests		5/31/2012 11:40:43 AM			Acquired	
		sdcaf		tests		5/31/2012 11:24:34 AM			Acquired	
		sdcaf		tests		5/31/2012 11:02:41 AM			Acquired	
	ion IIV	1	Pump Press	ire?	1 PEB(0.0:10.0)P	SIM(170 0) 0 0 CAL 300000	3 PEB(0.0-10.0)PSU	M(226 0) 0 0 CAL 3	00000	

- Cliquer sur les données qui vous intéressent et cliquer sur **Open**, les résultats s'affichent. Le tableau des pics peut être imprimé ou exporté vers Excel.

Chromera - LC_UV_MS (Administrator)									
File View Tools Display Actions H	qle								
1, 3 8 & M 0 2 2 1 0	🙆 👬 🖄		🕹 • 🎝 • 🗈 😂 🕯		🗁 🛵 📩 Sc	ale All Charts			
(J)	Batch	: Procedure	LC-MS						
Post Run									
🕀 Views				Inject	ion 2: UV	1:1			
General Views	60-5								
- Single Plot	00-	1							
- Stacked Plots	-	1							
Overlay	50-	-							
	-	1						c	
	-	f =						E	
	40-	107					-	3.13	
	-	T					-Bi	I E .	
🖃 Data	20	1 1					281	46	
Procedure LC-MS	5 -						1	00 00	
	mAl -						t	· = / 1 = ·	.e
	8 20-	11 //					= ·=	64 1	ie 🖁
	- pau	11 11				-E	in min	in i	75r
Pompe	- DSOI					10	6.76	13 88	9.4
B V MS	≪ 10-					5.6	°I II		
PER(0.0:10.0)PSIM	-	111				1	*A 11	V Lan	X
M 3 PERIOUTION SIM	-		1			Λ	Non	×	
	0-		1 xex			1 mm			
	-	111/	/						
	-10-								
	1								
	-	××							
	-20-	11111			1 1 1 1 1	11111			
	0	1	2	3 4	5 Time (min)	6	7	8	ə 10
		36, 1 : 10.32			Title (mill)				
	Result	(S							
		Channel	Det Time	Company Mana	A	Li ulului	Einel American	Figure Assessment Harity	TP.
	-	Criariner	riec rine	Component Hame	Alea	rieigin	T IT I AT ANTIOUTR	T inal 24hour Conics	
			5.691		4215152	7196.44			
	-	UV 1	6.576		38431.37	6745.09			
🕥 Run Time	-	UV 1	6.781		35725.42	7386.69			
×211		UV 1	7.126		1905.06	503.45			
Method	-	UV 1	7.281		113416.03	24404.61			
Sequence	-	UV 1	7.949		59822.55	10540.49			
		UV 1	8.133		189713.79	30232.38			
Man Post Run	- T	001	8.287 0.40E		7495 22	20653.88			
Reprocess	- T	UV 1	8.716		3720.57	966.12			
		UV 1	8.846		67358.66	16262.38			
C Reports	1	UV 1	9.475		6438.58	884.91			10
»		tona.	10.000		100.00 0.		1		li li
	Results								

Rédigé par : M. MICHNICK	Vérifié par : M. IDOUMBIN	Approuvé par : M. LAMAUVE
Date : 22/10/2015	Date : 26/10/2015	Date : 10/11/2015