		Pr Bioch/Micro MA 037
LYCEE	PROCEDURE	Version 1
SAINT-PAUL IV	Utilisation du pilote AKTA FLUX S	Mise en application le 12/10/2018
	avec le module KVICK START 10 kDa	Page 1/6

1. Presentation du pilote AKTA FLUX S

ÄKTA Flux S est un système de filtration à flux croisés (CFF). Il est conçu pour une utilisation dans un environnement de laboratoire destiné à la recherche et pour des objectifs de formation. Le système est configuré pour fonctionner avec :

- des cartouches à fibres creuses adaptées à la microfiltration,
- des cassettes/fibres creuses pour l'ultrafiltration, comme la concentration en protéines et la diafiltration dans l'exploitation des unités en aval.

1.1 ELEMENTS DE L'APPAREIL

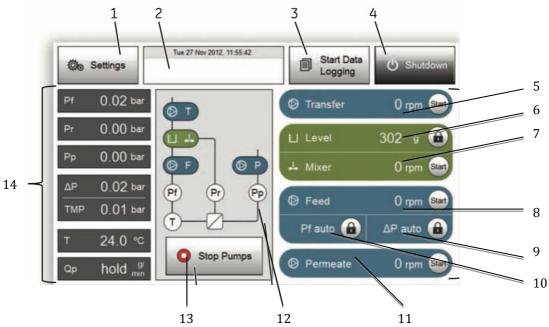
Document 1 : pilote, vue de face

1	Pompe de transfert	9	Vanne de régulation de pression du rétentat
2	Support du réservoir avec balance		Capteur de pression de l'alimentation Pf
3	Réservoir avec mélangeur	11	Vanne vidange inférieure
4	Filtre à air	12	Interrupteur de mise en marche
5	Ecran tactile	13	Pompe d'alimentation
6	Vanne vidange supérieure	14	Collier de sertissage
7	Capteur de pression du rétentat Pr	15	Idem
8	Support de la cartouche ou de la cassette filtrante	16	Idem

Document 2 : pilote, vue arrière

17	Vanne de régulation de la pression du perméat	21	Orifice ventilation
18	Capteur de pression du perméat Pp	22	Entrée d'air
19			Disjoncteurs
20	Protection connecteur USB	24	Prise de cordon d'alimentation

Rédigé par ML Serrayet	Vérifié par Sumio Michnick	Approuvé par Pascal Lamauve
le 25/02/17	le 09/03/17	le 12/10/2018

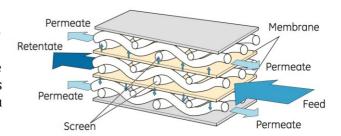

PROCEDURE

Pr Bioch/Micro MA 037 Version 1 Mise en application le 12/10/2018

Utilisation du pilote AKTA FLUX S avec le module KVICK START 10 kDa

Page 2/6

1.2 ECRAN TACTILE


1	Settings. Sous-menus : USB Device, Alarms, Configure, Calibration et System Information.	6	Ajuste la commande du niveau et affiche la quantité de liquide dans le réservoir.	11	Ajuste la pompe de perméat et affiche son débit.
2	Tableau d'informations. Affiche les fonctions actives automatisées et les paramètres de ces fonctions.	7	Ajuste le mélangeur et affiche la vitesse de rotation du mélangeur.	12	Vue générale du schéma d'écoulement du système.
3	Cette fonction est active si un périphérique USB est connecté.	8	Ajuste la pompe d'alimentation et affiche son débit.	13	Arrêt de toutes les pompes.
4	Eteint le système. Toujours utiliser ce bouton durant un arrêt normal.	9	Utilisé pour programmer le système de façon à ce que le ΔP du rétentat (Pf -Pr) soit maintenu constant par la régulation du débit de la pompe d'alimentation.	14	Panneau des paramètres.
5	Ajuste la pompe de transfert et affiche son débit.	10	Utilisé pour définir Pf et garder sa valeur constante Contrôle la vitesse de la pompe d'alimentation		

Document 3 : présentation écran tactile

2. LE MODULE KVICK START 10 kDa

2.1 Presentation du module

Les cassettes filtrantes Kvick Start consistent en de nombreuses couches de membranes . La taille des pores détermine les caractéristiques de filtration de la cassette , c'est-à-dire fixe la taille limite des particules qui seront retenues ou passeront au travers du filtre avec le perméat.

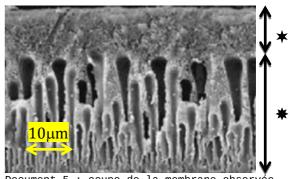
Document 4 : Organisation d'une cassette Kvick Start

Rédigé par ML Serrayet	Vérifié par Sumio Michnick	Approuvé par Pascal Lamauve
le 25/02/17	le 09/03/17	le 12/10/2018

PROCEDURE

Pr Bioch/Micro MA 037

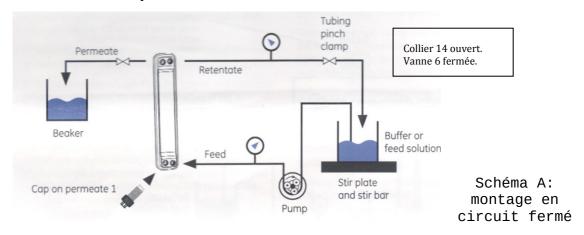
Version 1

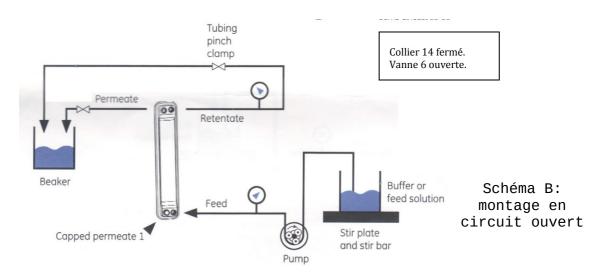

Mise en application le
12/10/2018

Utilisation du pilote AKTA FLUX S avec le module KVICK START 10 kDa

Page 3/6

2.2 CARACTERISTIQUES DE LA MEMBRANE


Membrane	Polyéthersulfone	
Support de la membrane	Polyolefin	
Surface	50 cm ²	
Perméabilité à l'eau normalisée (à 25°C)	$Lp = 210 \text{ mL.min}^{-1}.\text{m}^{-2}.\text{bar}^{-1}$	
Test de diffusion de l'air	< 1 mL.min ⁻¹	
Sélectivité	 - Passage du polyvinylpyrrolidone C15 (8 kDa): entre 82 et 95%. - Passage de la BSA (69,3 kDa): < 2,0% dans le perméat 	



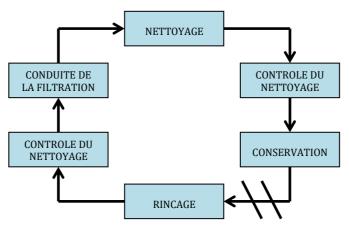
Document 5 : coupe de la membrane observée en microscopie électronique à balayage. 1 : polyéthersulfone 2 : polyolefin

3. MONTAGE

- Monter les flexibles comme indiqué dans le document 1.
- Positionner un flexible supplémentaire au niveau de la vanne de vidange supérieure (6).
- Monter la cassette comme indiqué ci-dessous.

Rédigé par ML Serrayet	Vérifié par Sumio Michnick	Approuvé par Pascal Lamauve
le 25/02/17	le 09/03/17	le 12/10/2018

PROCEDURE


11 Diocii/Micio MA 037	
Version 1	
Mise en application le 12/10/2018	

Dr Dioch/Mioro MA 027

Utilisation du pilote AKTA FLUX S avec le module KVICK START 10 kDa

Page 4/6

4. CYCLE D'UTILISATION DU MODULE DE FILTRATION

4.1 RINCAGE DU MODULE AVANT FILTRATION

- Configurer l'appareil en circuit fermé (schéma A : 6 et 11 fermés et colliers de sertissage ouvert).
- Remplir le réservoir d'alimentation avec 200 mL d'eau déminéralisée.
- Faire tourner la pompe d'alimentation (13) à 50 mL.min⁻¹ en imposant une TMP (pression transmembranaire) de 2 bars. Pour régler la TMP, visser ou dévisser la vanne de régulation (9).
- Vérifier que le circuit ne présente aucune fuite.
- Arrêter la pompe une fois les 200 mL utilisés.

4.2 CONTROLE DE L'EFFICACITE DU NETTOYAGE

- 1. L'efficacité du nettoyage est évaluée grâce à la détermination de la perméabilité de la membrane à l'eau à 25°C.
- Configurer l'appareil en circuit fermé.
- Remplir le réservoir de 100 mL d'eau déminéralisée.
- Ouvrir la vanne du rétentat.
- Faire tourner la pompe d'alimentation à $50~\text{mL.min}^{\text{-}1}$ en imposant une TMP (pression transmembranaire) de 2~bars exactement.
- Introduire le tuyau de perméat dans une éprouvette graduée de 100 mL.
- Recueillir l'eau pendant exactement 1 minute.
- Arrêter la pompe.
- Mesurer le volume recueilli.
- 2. Calculer la perméabilité de la membrane à 25°C.

Données:

- J (flux de perméation en mL. min⁻¹.m⁻²) = $\frac{D$ (débit de l'eau en mL.min⁻¹) S (surface membrane en m²)
- *Lp* perméabilité membranaire (mL. min⁻¹.cm⁻².bar⁻¹) = $\frac{J}{TMP}$
- Surface de la membrane = 50 cm^2 Flux $_{\text{à }25^{\circ}\text{C}}$ = Flux $_{\text{à T mesurée}}$ x 25/ $T_{\text{mesurée}}$
- 3. La perméabilité de la membrane pour l'eau à une température de 25°C **doit être supérieure à :**

2100 mL.min⁻¹.m⁻².bar⁻¹

Rédigé par ML Serrayet	Vérifié par Sumio Michnick	Approuvé par Pascal Lamauve
le 25/02/17	le 09/03/17	le 12/10/2018

		Pr Bioch/Micro MA 037
LYCEE	PROCEDURE	Version 1
SAINT-PAUL IV	Utilisation du pilote AKTA FLUX S	Mise en application le 12/10/2018
	avec le module KVICK START 10 kDa	Page 5/6

4.3 CONDUITE DE LA FILTRATION

En pratique, pour concentrer une molécule on utilise une membrane dont le seuil de coupure est 3 à 5 fois inférieur à la masse moléculaire de celle-ci.

A l'inverse, pour filtrer une molécule on utilise une membrane dont le seuil de coupure est 10 fois supérieur à la masse moléculaire de celle-ci.

Les conditions de l'opération sont les suivantes :

TMP max	4 bars	Débit d'alimentation usuelle	25 à 80 mL
Température max	50°C	TMP usuelle	0,8 à 1,5 bars
pH max	1 à 14		

Pour la conduite de l'opération et son optimisation, utiliser les indications de votre TP.

4.4 Nettoyage

* Rincage à l'eau déminéralisée

- Configurer l'appareil en circuit ouvert (schéma B).
- Remplir le réservoir d'alimentation avec 400 mL d'eau déminéralisée.
- Ouvrir la vanne du rétentat.
- Faire tourner la pompe d'alimentation à 80 mL.min⁻¹.
- Après évacuation de 200 mL, régler la pompe à 30 mL.min⁻¹ et imposer une TMP d'environ 1 bar.
- Arrêter la pompe une fois les 200 mL restant utilisés.

❖ Nettovage (compter un peu plus d'1 heure)

- L'appareil reste en circuit ouvert.
- Ouvrir la vanne du rétentat et fermer la vanne du perméat (17).
- Remplir le réservoir d'alimentation avec 500 mL d'une solution de NaOH 0,1 à 0,5 mol.L- 1 . Pour un nettoyage plus agressif ajouter 1,5 mL de Javel à 6% dans la solution.
- Démarrer la pompe. Le débit de filtration tangentielle doit être égal ou jusqu'à 1,5 supérieur à celui qui a été utilisé durant la filtration.
- Après utilisation de 100mL de solution, ouvrir la vanne du perméat et faire tourner la pompe d'alimentation en imposant une TMP de 1 bar.
- Poursuivre le nettoyage pendant 40 à 60 minutes. Attention, le réservoir doit être régulièrement rempli.
- Pour les 5 dernières minutes configurer l'appareil en circuit fermé (schéma A)

* Rinçage à l'eau déminéralisée

- Configurer l'appareil en circuit ouvert.
- Remplir le réservoir d'alimentation avec 200 mL d'eau déminéralisée.
- Faire tourner la pompe à 50 mL.min⁻¹ en imposant une TMP d'environ 2 bars.
- Une fois les 200 mL utilisés, PROCEDER AU CONTROLE D'EFFICACITE DU NETTOYAGE.

Rédigé par ML Serrayet	Vérifié par Sumio Michnick	Approuvé par Pascal Lamauve
le 25/02/17	le 09/03/17	le 12/10/2018

		Pr Bioch/Micro MA 037
LYCEE	PROCEDURE	Version 1
SAINT-PAUL IV	Utilisation du pilote AKTA FLUX S	Mise en application le 12/10/2018
	avec le module KVICK START 10 kDa	Page 6/6

4.5 CONSERVATION

* Module

- Configurer l'appareil en circuit fermé.
- Remplir le réservoir de 200 mL d'une solution de NaOH 0,1 mol.L-1.
- Faire tourner la pompe d'alimentation à 50 mL.min⁻¹ en imposant une TMP d'environ 2 bars.
- Arrêter la pompe une fois les 200 mL utilisés
- Ouvrir les vannes du rétentat et du perméat.
- Vidanger le réservoir, les flexibles et la cassette grâce aux vannes de vidange supérieure et inférieure.
- Démonter le module et le conserver entre 2 et 4°C.

❖ Pilote

- Rincer les flexibles à l'eau.
- Dévisser tous les flexibles et les stocker au sec
- Recouvrir l'appareil avec sa housse.